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PREFACE AND SUISARY

A method for converting certain optimization problems in the

calculus of variations into Cauchy problems is presented. No direct

use of Euler equations or dynamic programuing is involved. This

provides a new conceptual framework for variational problems with

both computational and analytical advantages.

This Memorandum may be of interest to applied mathematicians,

control theorists, and numerical analysts.

Dr. Sridhar is a member of the Department of Electrical En-

gineering, California Institute of Technology.
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I. INITODUCTION

In recent years methods have been developed for transforming

various classes of functional equations into initial-value problems.

One of the motivations is that current computing machines can fre-

quently hi'tdle such Cauchy problems with accuracy and dispatch. (1,2)

Among the classes considered have been two-point boundary-value

problems,(3) Fredholm integral equations,(4) and multi-point

boundary-value problems. (5)

It will be shown that certain variational problems can be

transformed directly into Cauchy problems, without using Euler

equations or dynamic programming. This, in effect, provides a new

conceptual framework for attacking variational problems with obvious

computational advantages and attractive analytical features for future
exploitation.
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II. DERIVATION OF THE EQUATIONS

Consider the minimization of the integral

T

I(N) -f f(y,wv) dy , (1)
a

where

w - w(y) , 0 y 9 T ,

and

d" (2)

Furthermore, let

w(a) - c (3)

with w(T) being free. Let

W - x- x(y,a,c) (4)

be the minimizer. For an arbitrary admissible variation 1•(y),

"a S y r T, with

T 0(a)i=0, (5)

"a necessary condition on x is that the first variation of the inte-

gral in Eq. (1) be zero. This leads to the equation

T

f [O(y,x,i) I + o!(y,xi) 11 dy - 0 , (6)
a

I.

!I
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where

- - , (7)

and

Sy, ,,, - .-• (8)

Suitable integration by parts in Eq. (6) and use of the fundamen-

tal lemma of the calculus of variations would lead to the Euler equation.

The procedure to be used below is different.

The choice of the admissible variation

1, a ic y s; t,

"ý(y) - (9)

O , t < y Z T ,

transforms Eq. (6) into the differential integral equation

t T
f (yx,i) dy + f e(y1x,1) T dy - 0 (10)
a a

From Eqs. (5) and (9), assuming continuity, it follows that

1(y) - k(t,y,a) - min(t-a,y-a) . (11)

From Eqs. (10) and (11) it is seen that

t 7
Sct(y,xi) dy + k(t,y,a) O(y,x,i) dy 0 O . (12)

aa



4

Differentiating both sides of Eq. (12) with respect to the variable t

leads to the relation

1(t, x(t), i(t)) + T kt(tya) 0(y,x,x) dy=0. (13)
a

From Eq. (11) we find

0 , !yCt

kt(t,y,a) - (14)
t I y>t

From Eqs. (13) and (14) it follows that

T
o(t,x,i) + T(y,xx) dy - 0 . (15)

t

We wish to study the minimizer x as a function of c and a. Thus,

when necessary, we shall write

x = x(y,a,c) , a ! y i T , - -< c <- , (16)

and Eq. (15), in full, will be written as

x(t,a,c), x(t,a,c))+ T + (Y, x(y,a,c), i(y,a,c)) dy = 0 . (17)

t

Another differentiation with respect to t of Eq. (17) would yield the

Euler equation. We shall proceed along different lines. In Eq. (17),

as well as in further developments, the dot refers to partial differen-

tiation with respect to the first variable. The condition specified

I
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by Eq. (4) is equivalent to

x(a,a,c) - c , (18)

or, written differently,

x(t,t,c) "c .(18)

Differentiation of Eq. (17) with respect to a leads to the linear

integro-differential equation for the partial derivative xas

T
(~x• xa wa x

a' (tpxsx) x + a'.(t'x'') 'a + Jt 1Bw' 1 ''i Xa

+ a,(yx") ýa dy - 0 , (19)

where

x = f (ta,c) . (20)

Taking the total derivative with respect to a of both sides of Eq. (18)

results in the formula

I x(a,a,c) + xa(a,ac) - 0 (21)

Differentiation of Eq. (17) with respect to c leads to the linear

i integro-differential equation for the partial derivative

TI w w(t'x'i) xc + Oto(t'x'i) ic + I £5W(y'x,) x*

+ e.(y,x,i) Xid dy 0 . (22)

w
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In Eqs. (19) and (22)

Otw(y,wv) - • (y,w,t) , (23)

where t is defined in Eq. (7). The variable . is similarly defined.

Taking the total derivative with respect to c of both sides of Eq. (18)

results in

x c(a,a,c) = 1 . (24)

It is seen from Eqs. (19) and (22) that the functions xa andc

satisfy identical linear homogeneous integro-differential equations.

The initial conditions given by Eq.. (21) and (24), though, are dif-

ferent for these functions. Assuming uniqueness, it follows that

Xa (t,a,c) - - i(a,a,c) xc(t,a,c) . (25)

Define

p(a,c) - i(a,ac) . (26)

Equation (25) becomes

Xa(t,a,c) - - p(ac) xc(t,a,c) , a • t . (27)

Equation (27) is the partial differential equation satisfied by x. It

has to be solved with the initial condition specified by the second

Eq. (18). We now have to determine p(a,c) before Eqs. (27) and (18)

can be solved.

Define

a, x(a,ac), -(aac) r(a,c) (28)



From Eqs. (18), (26), and (28), it follows that

r(a,c) - o(a,c, p(a,c)) (29)

Assuming that Eq. (29) is invertible, r(a,c) determines p(ac). We

will now derive the partial differential equation and associated initial

condition satisfied by r(a,c). When t - a, Eqs. (17) and (29) lead to

T
r(a,c) +J O(y, x(y,ac), i(y,a,c)) dy f 0 . (30)

a

Taking partial derivatives with respect to a on both sides of Eq. (30)

leads to the equation

/ ~ T

ra(a,c) - 5(a, x(aac), i(a,a~c)) + f {w(Yx') xa
a

+ V(y,x,") '] dy 0 (31)

From Eqs. (18), (26), (27), and (31), it follows that

ra(ac) - $(a,c, p(a,c))- p(a,c) jT(OW(y,x,i) xc
a

+ 0,(y,x,x) ic) dy - 0 . (32)

Taking partial derivatives with respect to c on both sides of

Eq. (30) leads to the equation

rc (ac) + f {W(y'x'i) x¢ + 8(y,x,x) lc) dy = 0 (33)
a
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Equations (32) and (33) result in the desired formula

r. (a,c) + p(a,c)rc (a.c) -- (*.cp(ac)) . (34)

From Eq. (30) it is evident that

r(T,c) - 0 . (35)

The partial differential Eq. (34), the finite Eq. (24), and

Eq. (35) constitute an initial-value problem for the functions r(a,c)

and p(a,c).

In practice the function r could be determined first and stored,

and then the function x could be determined. To avoid storage prob-

lems in the digital computer, the functions r and x could be determined

simultaneously.
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III. DISCUSSION

A method for directly obtaining the initial-value problew

associated with the simplest problem in the calculus of variations

has been presented. It is contained in Eqs. (27), (18), (34), (35),

and (29). Extensions of this method to more general problems in

the calculus of variations, as weil as in optimal control theory,

are under study. (6)

I

j%
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